

# Cours d'algèbre 1 (M.I.P)

# Chapitre 4 : Arithmétique dans $\mathbb Z$

(Ce document ne peut en aucun cas remplacer les séances de cours en présentiel)

PR. EL MEHDI BOUBA

Année universitaire :2023–2024

#### 4. Arithmétique dans $\mathbb{Z}$

#### 4.1. L'ensemble $\mathbb{Z}$ des entiers relatifs.

On désigne par Z l'ensemble des entiers relatifs, soit

$$\mathbb{Z} = \{\ldots, -n, \ldots, -3, -2, -1, 0, 1, 2, 3, \ldots, n, \ldots\}.$$

On rappelle que l'ensemble  $(\mathbb{Z}, +, \cdot)$  des entiers relatifs est un anneau unitaire, commutatif et intègre.

L'ensemble  $\mathbb Z$  est muni d'une relation d'ordre total, à savoir la relation d'ordre usuel  $\leq$ . L'ensemble  $\mathbb Z$  est bien ordonné, c'est-à-dire que :

- toute partie non vide et minorée de Z admet un plus petit élément,
- toute partie non vide et majorée de Z admet un plus grand élément.

#### 4.2. Division dans $\mathbb{Z}$ .

#### 4.2.1. Relation de divisibilité.

**Définition 4.1.** Soient a et b deux entiers relatifs. On dit que a divise b ou b est un multiple de a, s'il existe  $k \in \mathbb{Z}$  tel que b = ak. On note alors a|b.

**Définition 4.2.** Soit n un entier de  $\mathbb{Z}$ .

- 1. L'ensemble des multiples de n est noté  $n\mathbb{Z} = \{nk \mid k \in \mathbb{Z}\}.$
- 2. L'ensemble des diviseurs de n dans  $\mathbb{Z}$  est noté  $D_n$ .
- 3. L'ensemble  $D_n \cap \mathbb{N}$  est l'ensemble des diviseurs positifs de n.
- 4. Pour tous a, b dans  $\mathbb{Z}$ , on a les équivalences :  $a|b \Leftrightarrow b \in a\mathbb{Z} \Leftrightarrow a \in D_b$ .

## Exemples 21.

- L'ensemble des multiples de 2 est  $2\mathbb{Z} = \{2k \mid k \in \mathbb{Z}\} = \{..., -6, -4, -2, 0, 2, 4, 6, ...\}.$
- L'ensemble des multiples de 3 est  $3\mathbb{Z} = \{3k \mid k \in \mathbb{Z}\} = \{..., -9, -6, -3, 0, 3, 6, 9, ...\}$ .
- $D_{12} = D_{-12} = \{-12, -6, -4, -3, -2, -1, 1, 2, 3, 4, 6, 12\}.$

**Lemme 4.1.** Si a|b alors  $(b = 0 \ ou \ |a| \le |b|)$ .

Preuve. Si a|b, alors il existe  $k \in \mathbb{Z}$  tel que b = ak. Si k = 0, alors b = 0. Si  $k \neq 0$ , alors  $|k| \geq 1$ , ceci implique que  $|b| = |ak| = |a||k| \geq |a|$ .

**Remarque 4.3.** Soient a et b deux éléments de  $\mathbb{Z}$ . En écrivant a|b, on définit une relation binaire sur l'ensemble  $\mathbb{Z}$ . Cette relation est :

- 1. réflexive, car a|a.
- 2. transitive, car si a|b et b|c, alors a|c.
- 3. mais elle n'est ni symétrique ni antisymétrique. Donc ce n'est ni relation d'équivalence ni relation d'ordre.

En outre on a l'équivalence :

$$(a|b \text{ et } b|a) \Leftrightarrow a = \pm b \Leftrightarrow |a| = |b|.$$

En revanche, la restriction de la relation de divisibilité à  $\mathbb{N}$  est une relation d'ordre (partiel).

On dit de deux entiers relatifs qui se divisent mutuellement (c'est-à-dire : qui sont égaux ou opposés, ou encore : qui ont la même valeur absolue) qu'ils sont associés. On

retiendra que deux entiers associés ont exactement les mêmes propriétés par rapport à la relation de divisibilité.

Propriétés 1. Nous avons les propriétés suivantes.

- 1. Pour tous entiers relatifs a et b, on a les équivalences :  $a|b \Leftrightarrow b\mathbb{Z} \subset a\mathbb{Z} \Leftrightarrow D_a \subset D_b$ . On en déduit que :  $a\mathbb{Z} = b\mathbb{Z} \Leftrightarrow |a| = |b| \Leftrightarrow D_a = D_b$ .
- 2. Les égalités  $(-n)\mathbb{Z} = n\mathbb{Z}$  et  $D_{-n} = D_n$  font qu'on se limite souvent à  $n \geq 0$ .
- 3. Si a, b sont dans  $n\mathbb{Z}$ , et si u, v sont dans  $\mathbb{Z}$ , alors au + bv est dans  $n\mathbb{Z}$ . Une telle propriété est fausse pour  $D_n$ : par exemple 2 et 3 sont dans  $D_6$  mais 2 + 3 = 5 n'y est pas.
- 4. Si d|a et d|b, alors d|au + bv pour tout  $(u, v) \in \mathbb{Z}^2$ .
- 5. Si a|b et c|d, alors ac|bd. En particulier, si a|b alors  $a^n|b^n$  pour tout  $n \in \mathbb{N}$ .
- 6. Si  $d \neq 0$ , alors  $a|b \iff ad|bd$ .

#### 4.2.2. Division euclidienne.

**Théorème 4.2** (division euclidienne dans  $\mathbb{Z}$ ). Soit (a,b) dans  $\mathbb{Z} \times \mathbb{Z}^*$ . Il existe un unique couple (q,r) de  $\mathbb{Z} \times \mathbb{N}$  tel que

$$a = qb + r \qquad et \qquad 0 \le r \le |b| - 1. \tag{4}$$

Preuve. On suppose que b > 0 et on pose :

$$A = \{ k \in \mathbb{Z} \mid bk \le a \}.$$

Donc l'ensemble A est non vide, car :

- pour  $a \ge 0$ , 0 est dans A, puisque  $0b = 0 \le a$ , et
- pour a < 0, a est dans A, puisque  $a ab = a(1 b) \ge 0$ .

De plus A est majoré :

- pour  $a \ge 0$ , a majore A, car pour tout  $k \in A$  on a : si  $k \le 0$  le résultat est evident ; et si  $k \ge 0$ , alors forcement  $k \le a$ , car sinon on aura

$$k \ge a \iff kb \ge ab > a$$
 ce qui est absurde, et

- pour  $a<0,\,0$  majore A, puisque  $bk\leq a<0$  implique  $k\leq 0.$ 

D'où A admet un plus grand élément q qui vérifie :

$$qb \le a < b(q+1)$$
.

Il suffit alors de poser : r = a - bq.

Pour b < 0 on travaille avec -b et on a l'existence de (q', r') vérifiant :

$$\begin{cases} a = -bq' + r', \\ 0 \le r' < b. \end{cases}$$

Et il suffit de poser q = -q' et r = r'.

Supposons qu'il existe deux couples d'entiers (q, r) et (q', r') vérifiant (4) avec  $q \neq q'$ . On a alors :

$$|r - r'| = |b(q - q')| \ge |b|$$
 puisque  $q - q' \ne 0$ ,

avec r et r' dans ]-|b|,|b|[. D'autre part, on a : -b < r-r' < b, d'où |r-r'| < |b|; ce qui est impossible. On a donc q=q' et r=r', Le couple (q,r) vérifiant (4) est donc unique.

**Définition 4.4.** (division euclidienne dans  $\mathbb{Z}$ ).

Soit (a,b) dans  $\mathbb{Z} \times \mathbb{Z}^*$ . Il existe un unique couple (q,r) de  $\mathbb{Z} \times \mathbb{N}$  tel que

$$a = qb + r$$
 et  $0 \le r \le |b| - 1$ .

Le passage du couple (a, b) au couple (q, r) s'appelle la division euclidienne de a par b. Dans cette division, a est le dividende, b le diviseur, q le quotient et r le reste.

#### Remarques 4.5.

- 1. Soient  $b \in \mathbb{Z}^*$  et  $a \in \mathbb{Z}$ . Alors b divise a si et seulement si le reste de la division euclidienne de a par b est nul.
- 2. Division euclidienne de a ou de -a par b.

Soit a = qb + r la division euclidienne de a par b.

Si a est multiple de b (c'est-à-dire r=0), la division euclidienne de -a par b s'écrit : -a = (-q)b.

Sinon (donc si  $1 \le r \le b - 1$ ), alors

$$-a = -qb - r = -qb - b + b - r = b(-q - 1) + (b - r).$$

4.3. Plus grand commun diviseur (PGCD).

**Définition 4.6.** Soit  $(a,b) \in \mathbb{Z}^2 - \{(0,0)\}$ . Le plus grand commun diviseur de a et best le plus grand entier (strictement positif) de l'ensemble des diviseurs communs de a et b, i.e.  $D_a \cap D_b$ . On le note  $\operatorname{pgcd}(a,b)$  ou  $a \wedge b$ .

**Proposition 4.3.** *Soit*  $(a, b) \in \mathbb{Z}^2 - \{(0, 0)\}$ . *Alors*  $a \wedge b = |a| \wedge |b|$ .

Preuve. Par définition. 

## Exemples 22.

- 1. Cherchons  $12 \wedge 28$ . Pour cela il suffit de chercher les diviseurs positifs de 12 et 28.
- On a  $D_{12}^+=\{1,2,3,4,6,12\}$  et  $D_{28}^+=\{1,2,4,7,14,28\}$ , donc  $12 \wedge 28=4$ . 2. Cherchons  $15 \wedge 35$ . On a  $D_{15}^+=\{1,3,5,15\}$  et  $D_{35}^+=\{1,5,7,35\}$ , donc  $15 \wedge 35=5$ .

**Propriétés 2.** *Soit*  $(a,b) \in \mathbb{N}^2 - \{(0,0)\}.$ 

- 1. Il est clair que  $a \wedge b = b \wedge a$ .
- 2. Pour tout  $a \in \mathbb{N}$ ,  $a \wedge 1 = 1$ .
- 3. Pour tout  $a \in \mathbb{N}^*$ ,  $a \wedge 0 = a$ .
- 4. Les diviseurs de  $a \wedge b$  sont également des diviseurs communs à a et b. On verra que la réciproque est vraie : les diviseurs communs à a et b sont aussi des diviseurs de  $a \wedge b$ .
- 5. On a l'égalité  $a \wedge b = a$  si et seulement si a est un diviseur de b.

6. 
$$a \wedge b = \delta \Leftrightarrow \begin{cases} \exists a' \in \mathbb{N}, a = a'\delta, \\ \exists b' \in \mathbb{N}, b = b'\delta, \\ a' \wedge b' = 1. \end{cases}$$

**Lemme 4.4.** Soient a,  $b \in \mathbb{N}^*$ . Soient q et r le quotient et le reste de la division euclidienne de a par b.

1. Un entier c divise a et b si et seulement s'il divise b et r. Autrement dit, les diviseurs communs de a et b sont exactement ceux de b et r.

2.  $a \wedge b = b \wedge r$ .

Preuve. 1. Comme c divise a et b, alors il divise a - bq = r; donc c divise b et r. Et si c divise b et r, alors il divisera bq + r = a; d'où le résultat.

Une application répétée de ce principe conduit au célèbre algorithme d'Euclide. Un **algorithme** est une suite finie et non ambiguë d'opérations ou d'instructions permettant de résoudre un problème ou d'obtenir un résultat. Le mot algorithme vient du nom arabe du mathématicien Al-Khawarizmi. La science qui étudie les algorithmes est appelé **l'algorithmique**. Cette science est utilisé actuellement dans de plusieurs domaines.

**Théorème 4.5** (Algorithme d'Euclide). Soient  $a, b \in \mathbb{N}^*$ . On veut calculer  $a \wedge b$ . On forme une suite finie d'entiers  $r_k$ , à commencer par  $r_0 = a$  et  $r_1 = b$ . Soit  $k \geq 1$ . On suppose que  $r_{k-1}$  et  $r_k$  sont connus.

Si  $r_k > 0$ , on note  $r_{k-1} = q_k r_k + r_{k+1}$  la division euclidienne de  $r_{k-1}$  par  $r_k$ . Sous l'hypothèse  $r_k > 0$ , on a donc défini  $r_{k+1}$ , avec  $0 \le r_{k+1} < r_k$ . La suite d'entiers naturels  $(r_k)_{k\ge 1}$  est finie car elle est strictement décroissante. Il existe donc un entier naturel n tel que  $r_n > 0$  et  $r_{n+1} = 0$ . Avec ces notations, on  $a: a \land b = r_n$ . Ainsi  $a \land b$  est le dernier reste non nul dans cette succession de divisions.

Preuve. Soient a et b deux entiers naturels non nuls, notons  $r_0 = a$  et  $r_1 = b$ . Par la division euclidienne de a par b on a :  $r_0 = r_1q_1 + r_2$ , avec  $0 \le r_2 < b = r_1$ .

- $\rightarrow$  Si  $r_2 = 0$ , alors  $b = r_1$  divise  $r_0 = a$  et  $a \land b = b$ .
- $\rightarrow$  Si  $r_2 \neq 0$ , alors  $a \wedge b = b \wedge r_2$ ; et  $b = r_2q_2 + r_3$ , avec  $0 \leq r_3 < r_2$ .
  - $\rightarrow$  Si  $r_3 = 0$ , alors  $r_2$  divise b et  $a \wedge b = b \wedge r_2 = r_2$ .
  - $\rightarrow$  Si  $r_3 \neq 0$ , alors  $b \wedge r_2 = r_2 \wedge r_3$ ;  $r_2 = r_3 q_3 + r_4$ , et  $0 \leq r_4 < r_3$ .

On construit ainsi une suite  $(r_k)$  d'entiers naturels tels que :

$$a = r_0 > r_1 = b > r_2 > r_3 > \dots > r_{n-1} > r_n \ge 0.$$

Cette suite est strictement décroissante, et son nombre de termes non nuls est fini. Notons n le plus petit entier tel que  $r_n = 0$ . D'où  $r_{n-1}$  est le dernier reste non nul. Par suite  $a \wedge b = r_{n-2} \wedge r_{n-1} = r_{n-1} \wedge r_n = r_{n-1} \wedge 0 = r_{n-1}$ .

**Remarque 4.7.** Soient  $a, b \in \mathbb{N}^*$ . Soit (q, r) le quotient et le reste de la division euclidienne de a par b. Pour calculer  $a \wedge b$ , on suggère l'algorithme suivant.

- 1. Réaliser la division euclidienne de a par b. Ceci produit des entiers q et r.
- 2. Si r = 0, alors rendre comme résultat b.
- 3. Sinon, remplacer a par b et b par r.
- 4. Retourner en 1.

#### Exemples 23.

1. Cherchons  $256 \wedge 74$ . Les divisions successives qui donnent ce pgcd sont :

$$\begin{array}{ll} 256 &= 74 \times 3 + 34 \\ 74 &= 34 \times 2 + 6 \\ 34 &= 6 \times 5 + 4 \\ 6 &= 4 \times 1 + 2 \\ 4 &= 2 \times 2 + 0. \end{array}$$

Le dernier reste non nul est 2. Donc  $256 \land 74 = 2$ 

2. Cherchons  $3675 \wedge 456$ . Les divisions successives qui donnent ce pgdc sont :

$$3675 = 456 \times 8 + 27$$

$$456 = 27 \times 16 + 24$$

$$27 = 24 \times 1 + 3$$

$$24 = 3 \times 8 + 0.$$

Le dernier reste non nul est 3. Donc  $3675 \land 456 = 3$ .

**Théorème 4.6 (identité de Bezout).** Soient  $(a,b) \in \mathbb{Z}^2 - \{(0,0)\}$  et  $\delta = a \wedge b$ . Alors il existe  $(u,v) \in \mathbb{Z}^2$  tel que  $au + bv = \delta$ . Le couple (u,v) s'appelle un couple de coefficients de Bezout.

#### Remarques 4.8.

1. Les coefficients de Bezout ne sont pas uniques. Si  $(u_0, v_0)$  est un couple de coefficients de Bezout, tous les couples de la forme  $(u_0 + kb, v_0 - ka)$  avec  $k \in \mathbb{Z}$  le sont aussi. En effet,

$$a(u_0 + kb) + b(v_0 - ka) = au_0 + akb + bv_0 - bka = au_0 + bv_0 + k(ab - ba) = au_0 + bv_0 = \delta.$$

2. La réciproque de ce théorème est fausse. Ainsi  $6=6\times 6-2\times 15$  mais  $6\wedge 15\neq 6.$ 

Preuve du théorème. Soit l'ensemble

$$A = \{ n \in \mathbb{N}^* \mid n = au + bv, u \in \mathbb{Z}, v \in \mathbb{Z} \}.$$

On a  $A \neq \emptyset$ , car  $a^2 + b^2 = a.a + b.b$ , (u = a et b = v), donc  $a^2 + b^2 \in A$ . Par suite A est une partie non vide de  $\mathbb{N}$ , d'où A admet un plus petit élément, i.e.

$$\exists p \in A \text{ tel que } \forall x \in A, p \leq x.$$

Donc il existe  $(u_0, v_0) \in \mathbb{Z}^2$  tel que  $p = au_0 + bv_0$ . Montrons que  $p = \delta$ .

Puisque  $\delta | a$  et  $\delta | b$ , alors  $a = \delta k_1$  et  $b = \delta k_2$ ,  $k_i \in \mathbb{Z}$ . D'où

$$p = au_0 + bv_0 = \delta(k_1u_0 + k_2v_0),$$

alors  $\delta | p$  et par suite  $\delta \leq p$ .

Par la division euclidienne de a par p, il existe  $(q,r) \in \mathbb{Z}^2$  tel que a = pq + r et  $0 \le r < p$ , d'où  $r = a - q(au_0 + bv_0) = (1 - qu_0)a - bv_0$ . (1)

Donc si r > 0, alors l'équation (1) implique que  $r \in A$ , et comme r < p alors ceci contredit le fait que p est le plus petit élément de A. Donc r = 0, et par suite p|a. On démontre de la même façon que p|b. Ceci implique que p est un diviseur commun de a et b, d'où  $p \le \delta$ . Donc  $p = \delta$ .

De cette démonstration, on déduit le lemme suivant.

**Lemme 4.7.** Soit  $(a,b) \in \mathbb{Z}^{*2}$ .  $\delta = a \wedge b$  est le plus petit élément strictement positif de l'ensemble  $A = \{x \in \mathbb{Z} \mid x = au + bv, (u,v) \in \mathbb{Z}^2\}$ .

### Exemple 4.9 (L'algorithme d'Euclide et les coefficients de Bezout).

Considérons le nombre  $3675 \land 456$  de l'exemple 23. Réécrivons les divisions euclidiennes de l'algorithme d'Euclide sous une autre forme :

$$27 = 3675 - 456 \times 8$$
  
 $24 = 456 - 27 \times 16$   
 $3 = 27 - 24 \times 1$ .

On part ensuite du pgcd (c'est-à-dire 3) et on remonte les lignes de la manière suivante :

$$\begin{array}{ll} 3 &= 27 - 24 \times 1. \\ &= 27 - (456 - 27 \times 16) \times 1 = 27 - 456 + 27 \times 1 \times 16 = 27 \times 17 - 456 \times 1 \\ &= (3675 - 456 \times 8) \times 17 - 456 \times 1 = 3675 \times 17 - 456 \times 8 \times 17 - 456 \times 1 \\ &= 3675 \times 17 - 456 \times 135. \end{array}$$

Ceci donne l'identité de Bezout :  $3 = 3675 \times 17 - 456 \times 135$ .

**Proposition 4.8.** Soit  $(a,b) \in \mathbb{Z}^2 - \{(0,0)\}$ . L'entier strictement positif  $\delta = a \wedge b$  est caractérisé par l'égalité

$$D_{\delta} = D_a \cap D_b$$
.

Preuve. Soit  $c \in D_{\delta}$ , c-à-d, c est un diviseur de  $\delta$ . Comme  $\delta$  divise a et b, alors c divise a et b, par suite  $c \in D_a \cap D_b$ . D'où  $D_{\delta} \subset D_a \cap D_b$ .

Réciproquement, soit  $c \in D_a \cap D_b$ , donc c est un diviseur commun de a et b, par suite  $a = ck_1$  et  $b = ck_2$ . Or il existe  $(u, v) \in \mathbb{Z}^2$  tel que  $\delta = au + bv$ ; d'où  $\delta = au + bv = c(uk_1 + vk_2)$ , ce qui donne que c divise  $\delta$ .

**Proposition 4.9.** *Soit*  $(a,b) \in \mathbb{Z}^2 - \{(0,0)\}.$ 

- 1. Pour tout entier strictement positif c, on  $a:(ca) \land (cb) = c(a \land b)$ .
- 2. Si k est un diviseur commun de a et b, alors  $\frac{a}{k} \wedge \frac{b}{k} = \frac{a \wedge b}{|k|}$ .

Preuve. 1. Posons  $\delta = a \wedge b$ , alors  $a = \delta k_1$  et  $b = \delta k_2$ , d'où  $ca = c\delta k_1$  et  $cb = c\delta k_2$ . Par suite  $c\delta$  est un diviseur commun de ca et cb, d'où  $c\delta < \delta'$ , où  $\delta' = ca \wedge cb$ .

D'autre part, il existe u, v dans  $\mathbb{Z}$  tels que  $\delta = au + bv$ , ce qui donne que  $c\delta = cau + cbv$ ; d'où  $c\delta \in A = \{u(ca) + v(cb) \mid u, v \in \mathbb{Z}\}$ . Par suite  $\delta' \leq c\delta$ , puisque  $\delta'$  est le plus petit élément de A, et donc  $\delta' = c\delta$ .

2. Si k est un diviseur commun de a et b, alors il existe  $(a',b') \in \mathbb{Z}^2$  tel que a=ka' et b=kb'; d'après le point (1) on a :  $a \wedge b=(ka') \wedge (kb')=|k|(a' \wedge b')$ , donc

$$\frac{a \wedge b}{|k|} = a' \wedge b' = \frac{a}{k} \wedge \frac{b}{k}.$$

4.4. Nombres premiers entre eux.

#### 4.4.1. Définition et propriétés.

**Définition 4.10.** Soit  $(a,b) \in \mathbb{Z}^2 - \{(0,0)\}$ . On dit que a et b sont premiers entre eux si  $a \wedge b = 1$ .

#### Exemple 4.11.

- 3 et 13 sont premiers entre eux.
- 15 et 32 sont premiers entre eux.

**Théorème 4.10** (Théorème de Bezout). Soit  $(a,b) \in \mathbb{Z}^2 - \{(0,0)\}$ . On a alors l'équivalence :

$$a \wedge b = 1 \Leftrightarrow \exists (u, v) \in \mathbb{Z}^2, \ au + bv = 1.$$

Preuve. Le sens direct est trivial par le Théorème 4.6

Réciproquement, soient a et b dans  $\mathbb{Z}$  tels que au + bv = 1, où u et v sont dans  $\mathbb{Z}$ , alors nous avons déjà montré que tout diviseur commun de a et b divise 1, donc  $D_a \cap D_b = \{-1, 1\}$ . Par suite  $\operatorname{pgcd}(a, b) = 1$ .

**Théorème 4.11** (Lemme de Gauss). Soit  $(a,b,c) \in \mathbb{Z}^3$  tel que c|ab et  $a \land c = 1$ . Alors c|b.

Preuve. Si c divise ab et  $a \wedge c = 1$ , alors ils existent u, v et k dans  $\mathbb{Z}$  tels que ab = kc et au + cv = 1; donc b = b(au + cv) = abu + bcv = kcu + bcv = c(ku + bv), ce qui implique c divise b.

**Théorème 4.12.** Soient a, b et c dans  $\mathbb{Z}$  tels que  $a \wedge b = 1$ ,  $a \mid c$  et  $b \mid c$ . Alors  $ab \mid c$ .

Preuve. Comme a divise c, alors il existe  $k \in \mathbb{Z}$  tel que c = ak. Or b|c, donc b|ak, et comme  $a \wedge b = 1$ , alors par le Lemme de Gauss on a b|k, il existe donc  $k' \in \mathbb{Z}$  tel que abk' = c. D'où ab|c.

**Proposition 4.13.** Soient  $a_1, a_2, \dots, a_r$  des entiers dans  $\mathbb{Z}$  et  $n \in \mathbb{Z}$ .

- 1. Si  $a_1, a_2, \dots, a_r$  sont tous premiers avec n, alors le produit  $a_1 a_2 \cdots a_r$  est également premier avec n.
- 2.  $Si\ a_1, a_2, \dots, a_r$  sont premiers entre eux deux à deux. Alors le produit  $a_1a_2 \cdots a_r$  divise n si et seulement pour tout i,  $a_i$  divise n.

Preuve. Par récurrence sur r.

## 4.4.2. Équation diophantienne du premier degré.

On se donne trois entiers relatifs a, b et c tels que  $(a,b) \neq (0,0)$ . On veut résoudre dans  $\mathbb{Z}^2$  l'équation

$$ax + by = c$$

d'inconnues x et y.

**Lemme 4.14.** L'équation ax + by = c admet au moins une solution dans  $\mathbb{Z}^2$  si, et seulement si,  $\delta = a \wedge b$  divise c.

Preuve. Supposons que l'équation admette une solution  $(x_0, y_0)$ . Comme  $\delta$  divise a et b,  $\delta \mid ax_0 + by_0 = c$  d'où le résultat.

Si  $c = \delta c'$  est un multiple de  $\delta$ , en écrivant que  $\delta = au_0 + bv_0$  avec  $u_0$ ,  $v_0$  dans  $\mathbb{Z}$ 

(Théorème4.6), alors  $c = \delta c' = au_0c' + bv_0c'$ . On déduit donc que  $(x_0, y_0) = (u_0c', v_0c')$  est une solution de ax + by = c.

**Théorème 4.15.** L'équation ax + by = c possède une solution, si et seulement si  $a \wedge b|c$ . Lorsque cette condition est satisfaite, et si  $(x_0, y_0)$  est une solution particulière de l'équation, alors tout autre solution (x,y) est de la forme  $x = x_0 + kb'$  et  $y = y_0 - ka'$ ,  $k \in \mathbb{Z}$ , où  $a' = \frac{a}{a \wedge b}$  et  $b' = \frac{b}{a \wedge b}$ .

Pour déterminer une solution particulière, on utilise l'algorithme d'Euclide pour déterminer des coéffcients de Bézout (u,v) du couple (a,b). On a alors  $au+bv=d=a \wedge b$ . On pose  $h=\frac{c}{d}$ , alors  $(x_0,y_0)=(uh,vh)$  est une solution particulière de l'équation.

**Exemple 4.12.** Soit à résoudre l'équation 224x + 175y = 21. On a  $224 \wedge 175 = 7|21$ , donc l'équation possède des solutions. On a  $(-7 \times 224) + (9 \times 175) = 7$ . Donc,  $(-21 \times 224) + (27 \times 175) = 21$ . Une solution particulière est donc (-21,27).  $a' = \frac{224}{7} = 32$ ,  $b' = \frac{175}{7} = 25$ . La solution générale de l'équation est (x,y) = (-21 + 25k, 27 - 32k),  $k \in \mathbb{Z}$ .

#### 4.5. Plus petit commun multiple (PPCM).

**Définition 4.13.** Soient a et b deux entiers relatifs non nuls. Un multiple commun de a et b est un entier relatif divisible à la fois par a et b. L'ensemble des multiples communs de a et b est noté  $a\mathbb{Z} \cap b\mathbb{Z}$ .

**Définition 4.14.** Soient a et b deux entiers relatifs non nuls. **Le plus petit commun multiple** de a et b est le plus petit entier strictement positif de l'ensemble des multiples communs de a et b, i.e.  $a\mathbb{Z} \cap b\mathbb{Z}$ . On le note  $\operatorname{ppcm}(a, b)$  ou  $a \vee b$ .

**Remarque 4.15.** Le ppcm(a, b) est défini aussi comme étant l'entier naturel m tel que  $a\mathbb{Z} \cap b\mathbb{Z} = m\mathbb{Z}$ .

Propriétés 3. Soient a, b et c dans  $\mathbb{Z}^*$ .

- 1. Il est clair que  $a \lor b = b \lor a$ .
- 2. Il est clair aussi que  $(a \lor b) \lor c = a \lor (b \lor c)$ .
- 3. Pour tout  $a \in \mathbb{Z}^*$ , on  $a : a \vee 1 = |a|$ .
- 4. Pour tout  $a \in \mathbb{Z}^*$ ,  $a \vee a = |a|$ .
- 5.  $a|b \iff a \lor b = |b|$ .
- 6. Tout multiple commun de a et b est un multiple de m = ppmc(a, b).

Preuve. Montrons la dernière propriété.

Soit M un multiple commun de a et b. La division euclidienne de M par  $m = a \vee b$  nous donne M = mq + r, où  $0 \leq r < m$ . Comme m et M sont des multiples de a et b, alors ils existent  $k_1$  et  $k_2$  dans  $\mathbb Z$  tels que  $M = ak_1$  et  $m = ak_2$ , d'où

$$r = M - mq = ak_1 - ak_2q = a(k_1 - k_2q).$$

Ceci implique que r est un multiple de a. De la même façon on montre que r est un multiple de b. Donc r est un multiple commun de a et b, or  $0 \le r < m$  et  $m = a \lor b$ , alors r = 0; d'où M = mq.

**Théorème 4.16.** Soient a et b dans  $\mathbb{Z}^*$ . Posons  $\delta = a \wedge b$  et  $m = a \vee b$ , alors

$$m\delta = |ab|.$$

Preuve. Posons  $\delta = a \wedge b$  et  $m = a \vee b$ , donc il existent  $\alpha, \beta, c$  et d tels que

$$\begin{cases} a = \delta \alpha, b = \delta \beta, \\ \alpha \wedge \beta = 1, \\ m = ac = bd. \end{cases}$$

Donc en multipliant a par c, et b par d on a :

$$ac = bd \Longrightarrow \delta \alpha c = \delta \beta d \Longrightarrow \alpha c = \beta d$$
,

d'où  $\alpha \mid \beta d$ , et comme  $\alpha \land \beta = 1$ , alors  $\alpha \mid d$ . Par suite il existe  $k \in \mathbb{Z}$  tel que  $d = \alpha k$ , donc

$$\alpha c = \beta d \Longrightarrow \alpha c = \beta \alpha k \Longrightarrow c = \beta k.$$

Par suite  $m = ac = a\beta k = \delta\alpha\beta k$ , c'est-à-dire que  $|\delta\alpha\beta|$  est un diviseur de m; d'autre part  $|\delta\alpha\beta|$  est un multiple commun de a et b (car  $\beta a = \alpha\delta\beta$  et  $\alpha b = \alpha\beta\delta$ ), donc forcement on doit avoir  $m = |\alpha\beta\delta|$ , ceci implique que  $m\delta = |\alpha\delta\delta| = |ab|$ .

Le résultat suivant est une simple déduction du théorème précédent.

Corollaire 4.17. Soient a et b deux entiers relatifs premiers entre eux. Alors

$$a \lor b = |ab|.$$

Preuve. Du fait que |ab| est un multiple de a et b on déduit que  $\mu = a \lor b$  divise |ab|. D'autre part, il existe deux entiers k, k' tels que  $\mu = ka = k'b$ . Donc a divise k'b, et comme a est premier avec b, alors a divise k' (Lemme de Gauss). Ce qui donne  $\mu = k''ab$ . D'où |ab| divise  $\mu$ , par suite l'égalité  $\mu = |ab|$ .

**Proposition 4.18.** Soient a et b deux éléments de  $\mathbb{Z}$ .

- 1. Pour tout  $c \in \mathbb{Z}$ , on  $a : ac \lor bc = |c|(a \lor b)$ .
- 2. Pour tout diviseur commun  $d \neq 0$  de a et b, on  $a : \frac{a}{d} \vee \frac{b}{d} = \frac{a \vee b}{d}$ .
- 4.6. Nombres premiers et factorisation.

**Définition 4.16.** Soit  $p \ge 2$  un entier. On dit que p est **premier** si les seuls diviseurs positifs de p sont 1 et p. Un entier  $\ge 2$  qui n'est pas premier est dit **composé**.

**Exemple 4.17.** 2, 3, 5, 7, 11 sont premiers,  $4 = 2 \times 2$ ,  $6 = 2 \times 3$ ,  $8 = 2 \times 4$  ne sont pas premiers.

**Théorème 4.19.** Tout entier  $n \geq 2$  admet au moins un diviseur qui est un nombre premier.

Preuve. Soit  $\mathfrak{D}$  l'ensemble des diviseurs de n qui sont  $\geq 2$ :

$$\mathfrak{D} = \{ k \ge 2 | k | n \}$$

 $\mathfrak D$  est une partie non vide de  $\mathbb N$  (car  $n \in \mathfrak D$ ), donc  $\mathfrak D$  possède un plus petit élément p. Montrons que p est premier. Soit d > 1 un diviseur de p. On a  $d \le p$ . Or d|n. D'où, par minimalité de p, d = p.

**Théorème 4.20** (Théorème d'Euclide sur les nombres premiers). Il existe une infinité de nombres premiers.

Preuve. Par l'absurde, supposons qu'il n'y ait qu'un nombre fini de nombres premiers que l'on note  $p_1=2,\ p_2=3,\ p_3,\ldots,\ p_n$ . Considérons l'entier  $N=p_1\times p_2\times\cdots\times p_n+1$ . Soit p un diviseur premier de N (un tel p existe par le Théorème précédent), alors d'une part p est l'un des entiers  $p_i$  donc  $p|p_1\times p_2\times\cdots\times p_n$ , d'autre part p|N donc p divise la différence  $N-p_1\times p_2\times\cdots\times p_n=1$ . Cela implique que p=1, ce qui contredit que p soit un nombre premier.

Remarque 4.18. Les nombres premiers forment une suite d'entiers. A l'heure actuelle, on connait très peu de choses sur cette suite.

**Proposition 4.21.** Soient  $n \in \mathbb{Z}$  et p un nombre premier, alors ou bien p|n ou bien  $p \wedge n = 1$ .

*Preuve.* Supposons que  $p \nmid n$  et soit  $d = p \wedge n$ . Comme d|p, on a d = 1 ou d = p. Supposons que d = p, alors p|n. Absurde. Donc d = 1.

**Théorème 4.22** (Lemme d'Euclide). Soient  $a, b \in \mathbb{Z}$  et p un nombre premier. Si p|ab, alors p|a ou p|b.

Preuve. Si p ne divise pas a alors  $p \wedge a = 1$  (d'après la proposition précédente). Ainsi par le lemme de Gauss p|b.

Corollaire 4.23. Soit p un nombre premier.

- 1. Si p divise un produit, alors il divise l'un de ses facteurs.
- 2. Si p divise un produit de nombres premiers, alors il est égal à l'un d'eux.

**Théorème 4.24.** Pour tout entier naturel  $n \geq 2$ , il existe des nombres premiers  $p_1 < p_2 < \ldots < p_k$ , des entiers naturels non nuls  $m_1, m_2, \ldots, m_k$  tels que n s'écrit de manière unique sous la forme  $n = p_1^{m_1} \times p_2^{m_2} \times \cdots p_k^{m_k}$ .

#### Exemple 4.19.

$$504 = 2^3 \times 3^2 \times 7$$
  $300 = 2^2 \times 3 \times 5^2$ 

Pour calculer le pgcd on réécrit ces décompositions

$$504 = 2^3 \times 3^2 \times 5^0 \times 7^1$$
  $300 = 2^2 \times 3^1 \times 5^2 \times 7^0$ 

Le pgcd s'obtient en prenant le plus petit exposant de chaque facteur premier

$$504 \land 300 = 2^2 \times 3^1 \times 5^0 \times 7^0 = 12$$

Pour le ppcm on prend le plus grand exposant de chaque facteur premier

$$504 \lor 300 = 2^3 \times 3^2 \times 5^2 \times 7^1 = 12600$$

#### 4.7. Congruences dans $\mathbb{Z}$ .

**Définition 4.20.** Soit n un entier naturel, et soient a, b deux entiers relatifs quelconques. On dit que a et b sont congrus modulo n, et on écrit  $a \equiv b$  [n], si b-a est dans  $n\mathbb{Z}$ , c'est-à-dire b-a est un multiple de n.

$$a \equiv b \ [n] \iff \exists k \in \mathbb{Z}, \ b - a = kn.$$

On définit ainsi une relation sur  $\mathbb{Z}$ , appelée relation de congruence modulo n.

## Remarque 4.21.

- On a l'équivalence :  $a \equiv b \ [n] \Leftrightarrow (\exists k \in \mathbb{Z}, a = b + kn).$
- $a \equiv b \ [n]$  équivaut à «a et b ont le même reste dans la division euclidienne par n».
- Pour n = 0, on a  $0\mathbb{Z} = 0$  et  $a \equiv b$  [0] revient à dire que a = b.
- Pour n=1, on a  $1\mathbb{Z}=\mathbb{Z}$ , et la relation  $a\equiv b$  [1] est toujours vérifiée.
- On suppose donc, dans ce qui suit que n > 2.

**Proposition 4.25.** Soit n un entier naturel. La relation de congruence modulo n est une relation d'équivalence sur  $\mathbb{Z}$ .

Preuve. Voir le chapitre 3.

**Proposition 4.26.** Soit n un entier strictement positif.

1. Pour tous entiers relatifs a, b, c, d on a les implications

$$\begin{cases} a \equiv b \ [n] \\ c \equiv d \ [n] \end{cases} \implies a + c \equiv b + d \ [n] \ et \ ac \equiv bd \ [n]$$

On dit que la congruence est compatible avec l'addition et la multiplication.

- 2. Pour tout entier naturel k, on a l'implication :  $a \equiv b \ [kn] \Rightarrow a \equiv b \ [n]$ .
- 3. Pour tout entier naturel k, on a l'implication :  $a \equiv b \ [n] \Rightarrow a^k \equiv b^k \ [n]$ .
- 4. Si q est un entier strictement positif, on a l'équivalence :  $a \equiv b \ [n] \Leftrightarrow qa \equiv qb \ [qn].$
- 5. Si les entiers q et n sont premiers entre eux, alors :  $qa \equiv qb \ [n] \Rightarrow a \equiv b[n]$ .

Classes d'équivalences Soit n un entier strictement positif fixé. On note souvent  $\overline{a}$  la classe d'équivalence de a pour la relation de congruence modulo n, c'est-à-dire l'ensemble des b de  $\mathbb{Z}$  tels que  $b \equiv a [n]$ ,

$$\overline{a} = \{b \in \mathbb{Z} | b \equiv a[n]\} = \{b \in \mathbb{Z} | b = a + kn, k \in \mathbb{Z}\} = \{a + kn | k \in \mathbb{Z}\} = a + n\mathbb{Z}.$$

Tout élément x de  $\overline{a}$  est un représentant de  $\overline{a}$ .

Avec ces notations,  $\overline{0} = \overline{n}$  est l'ensemble de tous les multiples de n dans  $\mathbb{Z}$ .

**Proposition 4.27.** Si a est un entier relative et n est un entier naturel, alors le reste de la division euclidienne de a par n est l'unique entier b tel que

$$a \equiv b \pmod{n}$$
 et  $0 \le b < n$ .

Preuve. Notons par q et r le quotient et le reste la division euclidienne de a par n, alors

$$a = nq + r$$
 et  $0 \le r < n$ .

Donc a - r = nq, d'où  $a \equiv r \pmod{n}$ .

Supposons b est un entier tel que  $a \equiv b \pmod{n}$  et  $0 \leq b < n$ . Comme  $a \equiv r \pmod{n}$ , alors  $b \equiv r \pmod{n}$ . D'où b - r est un multiple de n. Or -n < b - r < n, donc b - r = 0, c-à-d, b = r.

De cette proposition découle que tout entier relatif a est congru, modulo n, à un unique entier r de  $\{0,...,n-1\}$  qui est le reste dans la division de a par n.

Il y a donc exactement n classes d'équivalences modulo n, et on note souvent l'ensemble des classes d'équivalence par :

$$\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z} = \{\overline{0}, \overline{1}, ..., \overline{n-1}\}.$$

$$\mathbb{Z}_0 = \mathbb{Z}/0\mathbb{Z} = \{\{a\} | a \in \mathbb{Z}\}.$$

$$\mathbb{Z}_1 = \mathbb{Z}/1\mathbb{Z} = \{\mathbb{Z}\} = \{\overline{0}\}.$$

**Théorème 4.28.** Pour tout entier naturel non nul n, on  $a: \mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z} = \{\overline{0}, \overline{1}, ..., \overline{n-1}\}$ . Cet ensemble est de cardinal égal à n et il est en bijection avec l'ensemble de tous les restes dans la division euclidienne par n.

Théorème 4.29 (Petit Théorème de Fermat). Soit p un nombre premier, alors pour tout  $a \in \mathbb{Z}$  on a:

$$a^p \equiv a \pmod{p}$$
.

De plus, si  $a \wedge p = 1$ , alors  $a^{p-1} \equiv 1 \pmod{p}$ .

**Lemme 4.30.** p divise  $\binom{p}{k}$  pour  $1 \le k \le p-1$ , c'est-à-dire  $\binom{p}{k} \equiv 0 \pmod{p}$ .

Preuve.  $\binom{p}{k} = \frac{p!}{k!(p-k)!}$  donc  $p! = k!(p-k)!\binom{p}{k}$ . Ainsi  $p|k!(p-k)!\binom{p}{k}$ . Or comme  $1 \le k \le p-1$  alors p ne divise pas k! (sinon p divise l'un des facteurs de k! mais il sont tous < p). De même p ne divise pas (p-k)!, donc par le lemme d'Euclide p divise  $\binom{p}{k}$ .  $\square$ 

Preuve du théorème. Nous le montrons par récurrence pour les  $a \ge 0$ .

- Si a = 0 alors  $0 \equiv 0 \pmod{p}$ .
- Fixons  $a \ge 0$  et supposons que  $a^p \equiv a \pmod{p}$ . Calculons  $(a+1)^p$  à l'aide de la formule du binôme de Newton :

$$(a+1)^p = a^p + \binom{p}{p-1}a^{p-1} + \binom{p}{p-2}a^{p-2} + \dots + \binom{p}{1} + 1$$

Réduisons maintenant modulo p:

$$(a+1)^p \equiv a^p + \binom{p}{p-1}a^{p-1} + \binom{p}{p-2}a^{p-2} + \dots + \binom{p}{1} + 1 \pmod{p}$$
  

$$\equiv a^p + 1 \pmod{p} \quad \text{grâce au lemme 4.30}$$
  

$$\equiv a+1 \pmod{p} \quad \text{à cause de l'hypothèse de récurrence}$$

• Par le principe de récurrence nous avons démontré le petit théorème de Fermat pour tout  $a \ge 0$ . Il n'est pas dur d'en déduire le cas des  $a \le 0$ .

**Exemple 4.22.** Calculons  $14^{3141} \pmod{17}$ . Le nombre 17 étant premier on sait par le petit théorème de Fermat que  $14^{16} \equiv 1 \pmod{17}$ . Écrivons la division euclidienne de 3141 par 16 :

$$3141 = 16 \times 196 + 5$$
.

Alors

$$14^{3141} \equiv 14^{16 \times 196 + 5} \equiv 14^{16 \times 196} \times 14^{5}$$
$$\equiv (14^{16})^{196} \times 14^{5} \equiv 1^{196} \times 14^{5}$$
$$\equiv 14^{5} \pmod{17}$$

Il ne reste plus qu'à calculer  $14^5$  modulo 17. Cela peut se faire rapidement :  $14 \equiv -3 \pmod{17}$  donc  $14^2 \equiv (-3)^2 \equiv 9 \pmod{17}$ ,  $14^3 \equiv 14^2 \times 14 \equiv 9 \times (-3) \equiv -27 \equiv 7 \pmod{17}$ ,  $14^5 \equiv 14^2 \times 14^3 \equiv 9 \times 7 \equiv 63 \equiv 12 \pmod{17}$ . Conclusion :  $14^{3141} \equiv 14^5 \equiv 12 \pmod{17}$ .