UNIVERSITE MOHAMMED V
FACULTE DES SCIENCES- RABAT

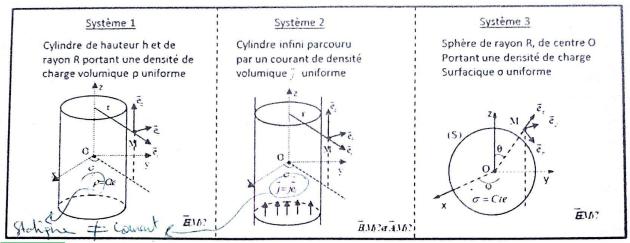
série 1

Année universitaire 2014-2015

SMP 4. Module 23: Electricité 3

TD Electricité III- Série I : Milieux diélectriques

Exercice 1: En utilisant les règles de symétrie des sources, donner en un point M quelconque de l'espace la dépendance er variables et la direction des champs pour les systèmes suivants :



Exercice 2 On considère une sphère de centre O, de rayon R et de densité de charge volumique uniforme $\rho = \rho_0$ à l'intérieur et $\rho = 0$ à l'extérieur. On supposera que la surface de la sphère est non chargée.

Déterminer le champ électrique \vec{E} en tout point M de l'espace.

- a- En utilisation du théorème de gauss (forme intégrale)
- b- En utilisant la forme locale (différentielle) du théorème de Gauss.

On donne en coordonnées sphériques $\overrightarrow{divA} = \overrightarrow{\nabla}.\overrightarrow{A} = \frac{1}{r^2} \frac{\partial (r^2 A_r)}{\partial r} + \frac{1}{r \sin \theta} \frac{\partial (A_\theta \sin \theta)}{\partial \theta} + \frac{1}{r \sin \theta} \frac{\partial A_\phi}{\partial \varphi}$

Exercice 3 Soit une distribution surfacique de densité de charge $\sigma = \sigma_0 \cos(\theta)$ portée par une sphère de centre O et de rayon R. (σ_0 est une constante positive et θ est l'angle que fait le vecteur position \overrightarrow{OP} d'un point P de la surface avec une direction déterminée Oz). Calculer la charge totale portée par la sphère ainsi que le moment dipolaire de cette distribution.

Exercice 4 Soit un cylindre diélectrique de hauteur h , de rayon R et d'axe de révolution Oz. Ce cylindre possède une polarisation uniforme $\vec{P} = P$ \vec{e}_z due à un champ électrique extérieur \vec{E}_0 uniforme.

- 1) Calculer les densités de charge de polarisation.
- 2) Calculer le champ électrique \vec{E}_d , créé en son centre O, par les charges de polarisation.

Exercice 5 On considère un cylindre diélectrique, de rayon R et de longueur infinie, possédant une polarisation permanente de la forme $\vec{P}(M) = P_0 \frac{\vec{r}}{r^3}$, où P_0 est une constante positive et r la distance d'un point M situé à l'intérieur du cylindre à l'axe zz' du cylindre. On utilisera le système de coordonnées cylindriques (r, θ, z) et on supposera que le cylindre ne porte aucune charge libre.

1) Calculer les densités de charge de polarisation.

- 2) En utilisant les propriétés de symétrie, trouver la dépendance en variables de $\tilde{E}(M)$ et $\tilde{D}(M)$ ainsi que leur $\tilde{E}(M)$ et $\tilde{E}(M)$ et
- 3) En appliquant le théorème de Gauss à ce cylindre, calculer l'expression de $\tilde{D}(M)$. En déduire celle de $\tilde{E}(M)$. On donne en coordonnées cylindriques : $div\vec{A} = \vec{\nabla} \cdot \vec{A} = \frac{1}{r} \frac{\partial (rA_r)}{\partial r} + \frac{1}{r} \frac{\partial A_\theta}{\partial \theta} + \frac{\partial A_z}{\partial z}$

LHIPE & X. E

Exercice 6 (rattrapage 2014): Soit une sphère de rayon a constituée d'un diélectrique parfait (l.h.i) de permittivité relative $arepsilon_r$. Au centre de cette sphère, est placée une charge ponctuelle arrho que l'on suppose logée dans une cavité microscopique sphérique de rayon b (voir figure).

- 1- En utilisant les propriétés de symétrie, trouver la dépendance en variables du champ électrique \overrightarrow{E} et du champ d'induction électrique D ainsi que leur direction.
- 2- Déterminer l'expression du champ d'induction électrique $\overrightarrow{D_i}$ en un point M du diélectrique à l'aide du théorème de Gauss. En déduire l'expression \overline{E}_i du champ électrique au même point.
- 3- Déterminer le vecteur polarisation \overrightarrow{P} en fonction des données du problème.
- 4- a : Déterminer les densités de charges de polarisation volumique $ho_{_p}$ et surfacique $\sigma_{_p}$. b: En déduire les charges de polarisation.
- 5- Déterminer le champ $\overline{E_d}$ créé par les charges de polarisation au point M à l'intérieur du diélectrique. Représenter sur une figure les champs \overline{E}_i et \overline{E}_d sachant que $Q \prec 0$.
- 6- Donner les expressions du champ électrique $\overrightarrow{E_e}$ et du champ d'induction électrique $\overrightarrow{D_e}$ à l'extérieur du diélectrique $(r \succ a)$, ainsi que leur discontinuité à la surface du diélectrique (r = a).
- 7- Déterminer l'énergie électrique emmagasinée dans le diélectrique en fonction de $Q, arepsilon_0, arepsilon_r, a$ et b .

<u>Exercice 7</u> Dans un champ électrique uniforme $E_0 = E_0 \vec{e}_z$ de module E_0 , on place une sphère diélectrique (S), de centre O et de rayon R . Le diélectrique est linéaire, homogène et isotrope, de permittivité diélectrique $\epsilon=\epsilon_0\epsilon_r$. On suppose que le champ \vec{E}_0 n'est pas modifié par l'introduction du diélectrique, que la polarisation $\vec{P} = P\vec{e}_z$ (P > 0) est uniforme sur tout le volume de la sphère et que le champ électrique est uniforme à l'intérieur de la sphère.

1) Calculer le champ total \vec{E}_i ainsi que le vecteur excitation \vec{D}_i correspondant, à l'intérieur de la sphère. En déduire l'expression de \vec{P} ainsi que celle de \vec{E}_i et \vec{D}_i en fonction \vec{E}_0 , ϵ et ϵ_0 .

A quel système électrostatique la sphère est-elle équivalente pour la région extérieure à la sphère.

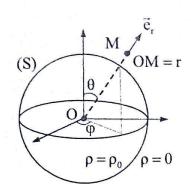
2) On suppose que le champ $\vec{E}_P(M)$ créé par la polarisation à l'extérieur de la sphère diélectrique est équivalent à celui d'un dipôle de moment $\vec{p} = \vec{pe_z}$ placé au point O. Pour un point M extérieur à la sphère tel que

 $OM = \vec{r} = r\vec{e}_r$ et $(OM,Oz) = \theta$ (coordonnées sphériques).

- a: Donner dans ce cas l'expression du potentiel $V_p(M)$.
- b : En déduire les expressions des champs $\vec{E}_{P}(M)$ et $\vec{D}_{P}(M)$
- 3) Soient $\vec{E}_e(M) = \vec{E}_0 + \vec{E}_P(M)$ et $\vec{D}_e(M) = \epsilon_0 \vec{E}_e(M)$ les champs à l'extérieur à la sphère
 - a : En exprimant la continuité de la composante normale de $\,ec{D}\,$ au voisinage de la surface, trouver la valeur qu'il faut donner à p pour assurer cette continuité.
 - c : Vérifier que cette valeur de $\stackrel{
 ightarrow}{p}$ assure la continuité de la composante tangentielle de $\vec{{
 m E}}$.

On donne en coordonnées sphériques
$$\vec{\nabla} V = \vec{\text{grad}} V = \frac{\partial V}{\partial r} \vec{e}_r + \frac{1}{r} \frac{\partial V}{\partial \theta} \vec{e}_\theta + \frac{1}{r \sin(\theta)} \frac{\partial V}{\partial \phi} \vec{e}_\phi$$

SMP4.Module23: électricité 3. Mars2015 Figures des exercices de TD de la série 1



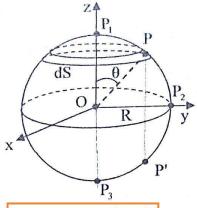
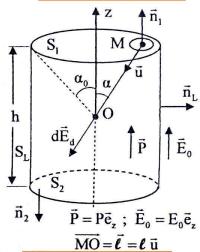
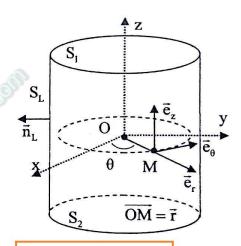


Figure exercice 2

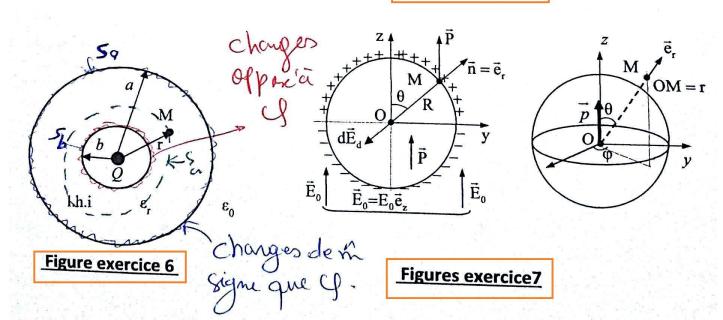
Figure exercice 3





 $\overrightarrow{MO} = \overrightarrow{l} = l \overrightarrow{u}$ Figure exercice 4

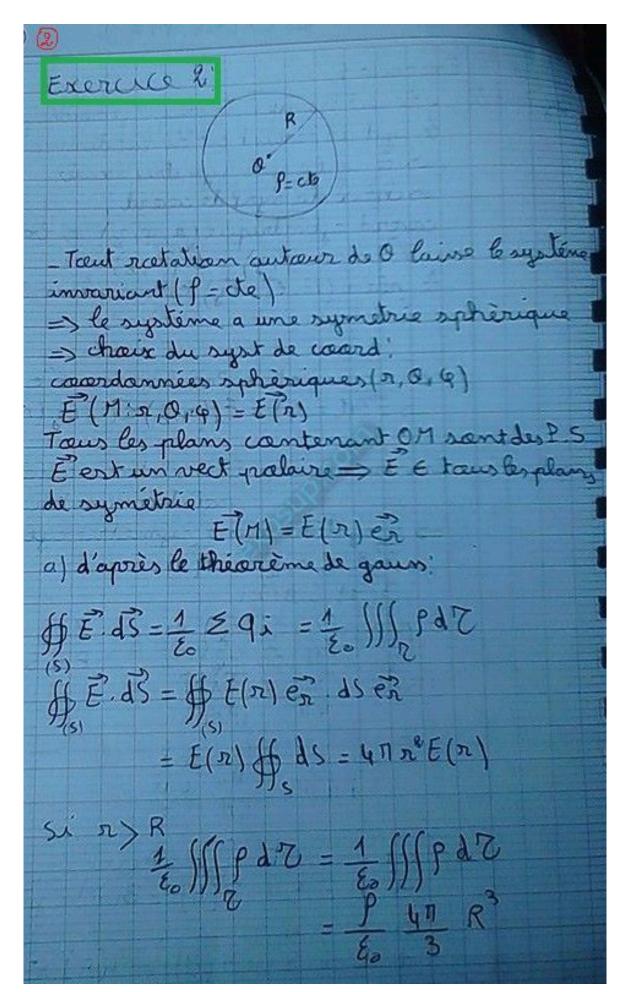
Figure exercice 5



Sériene 1 Exercice 3 Système D - la seul transformation géametrique qui lains le syst invariant est la rotation autour de 03 => le syst a une symétrie axials => chaix du syst de covard coverd cylindrique (r, 4, 8) = base (en eq, E(M.n, 4,3) = E(n,3) le plan (M. Er, Ez) est un plan de symétrie a non vedeur prolovie E 25 et 1 293 un rederer accela 1 PSEIBAS E est un vedeure Polaire => EEPS $\Rightarrow E(H, \pi, \varphi) = E_n(\pi, \delta) e_n + E_{\delta}(\pi, \delta) e_{\delta}$ ystème @ Invariance par translation le lang de 03 ratalian autour de 03 => le système a une symétrie cylindrique: A(Min, 4,3) = A(n) B(M) = B(n) le plan (M, en, ez) est un P. S dB(M) = (M, en, er) " " P.A.S 4 17 (PM) ⇒ B estem vect axial

d A(M) = Mo Ide

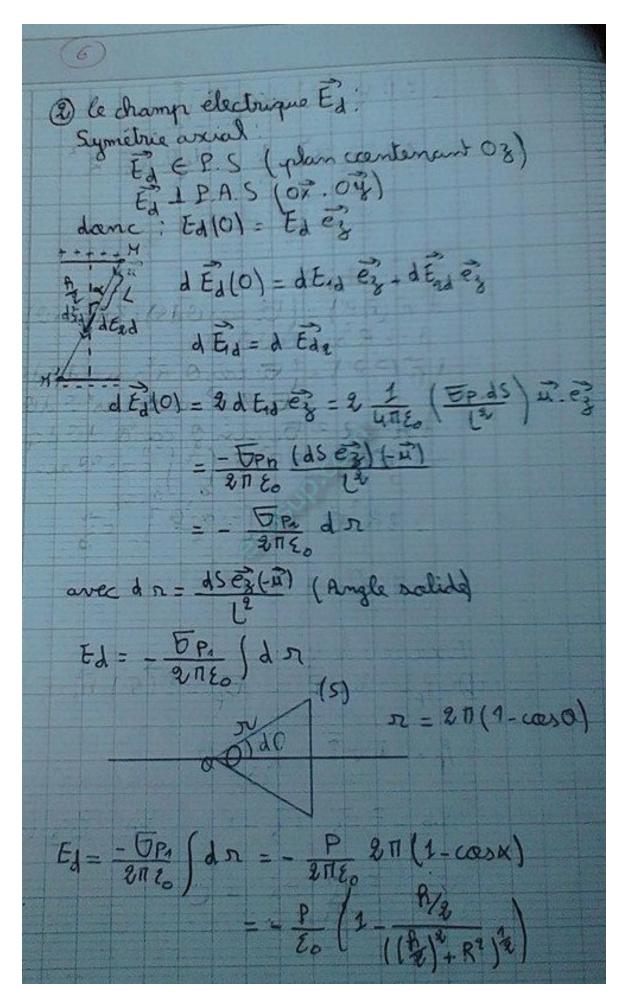
LT 52 BLP. S B(H) = B(R) EB A 1 P.S A(M) = A(R) e3

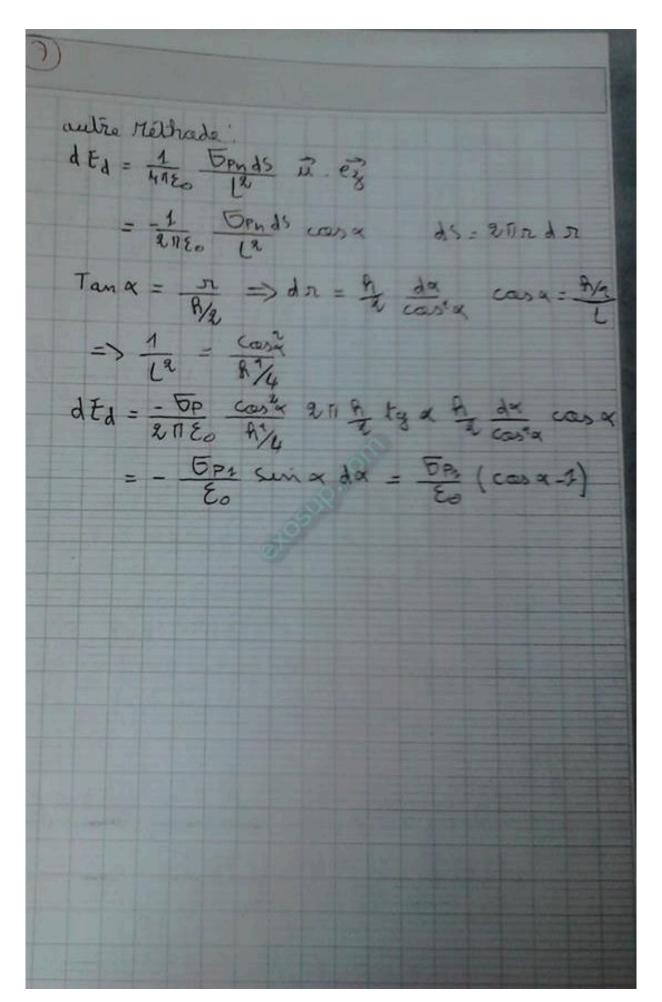


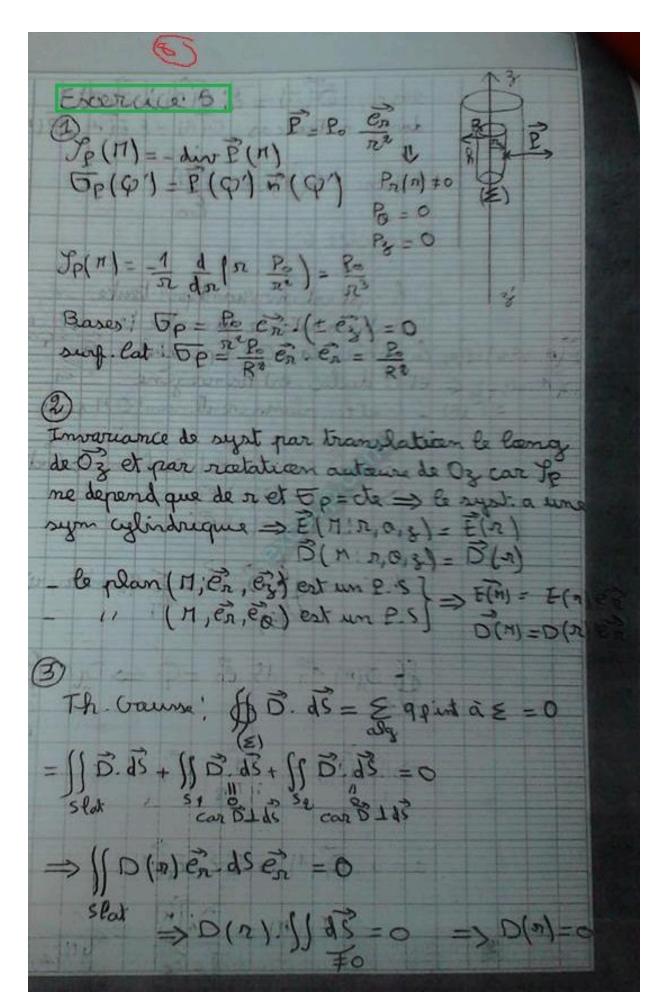
Si
$$n < R$$

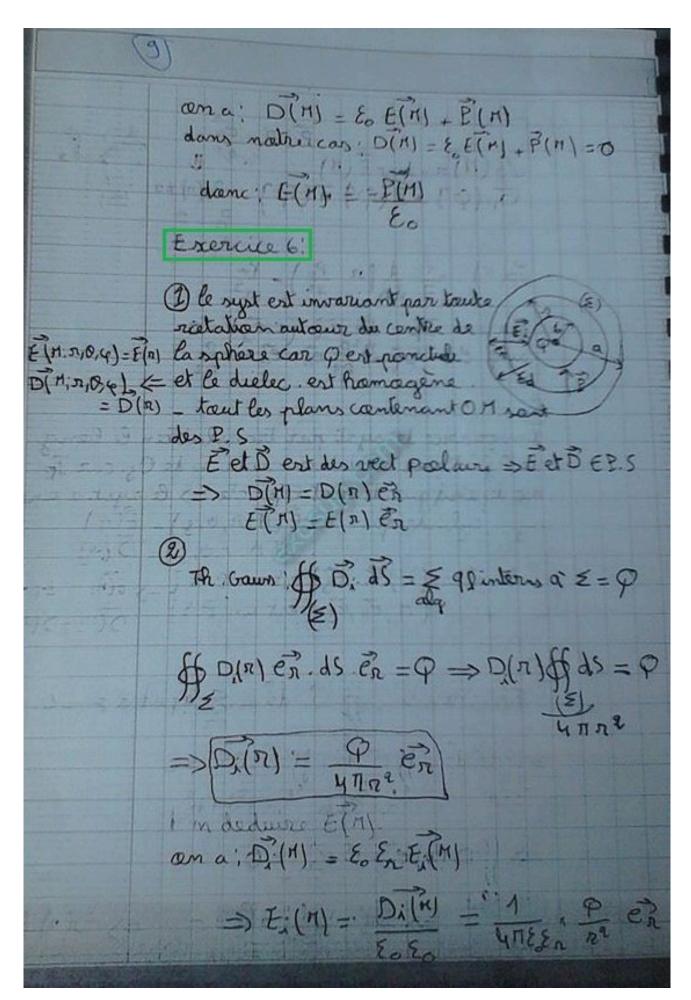
$$\frac{1}{E_0} \iiint_E p d C = \frac{p}{E_0} \lim_{n \to \infty} \frac{1}{n^2}$$

$$E(M) = \lim_{n \to \infty} \frac{1}{E_0} \lim_{n \to \infty}$$









$$\begin{array}{l} \left(\frac{\partial}{\partial x}\right) = \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x}\right) + \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x}\right) \\ = \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x}\right) = \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x}\right) + \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x}\right) \\ = \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x}\right) + \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x}\right) + \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x}\right) \\ = \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x}\right) + \frac{\partial}{\partial x} \left(\frac{\partial$$

Ed(n)
$$ff dS = \frac{Qp_0}{20}$$

Ed(n) $ff dS = \frac{Qp_0}{20}$

De $ff dS = \frac{Qp_0}{20}$

Education in the product $ff dS = 0$

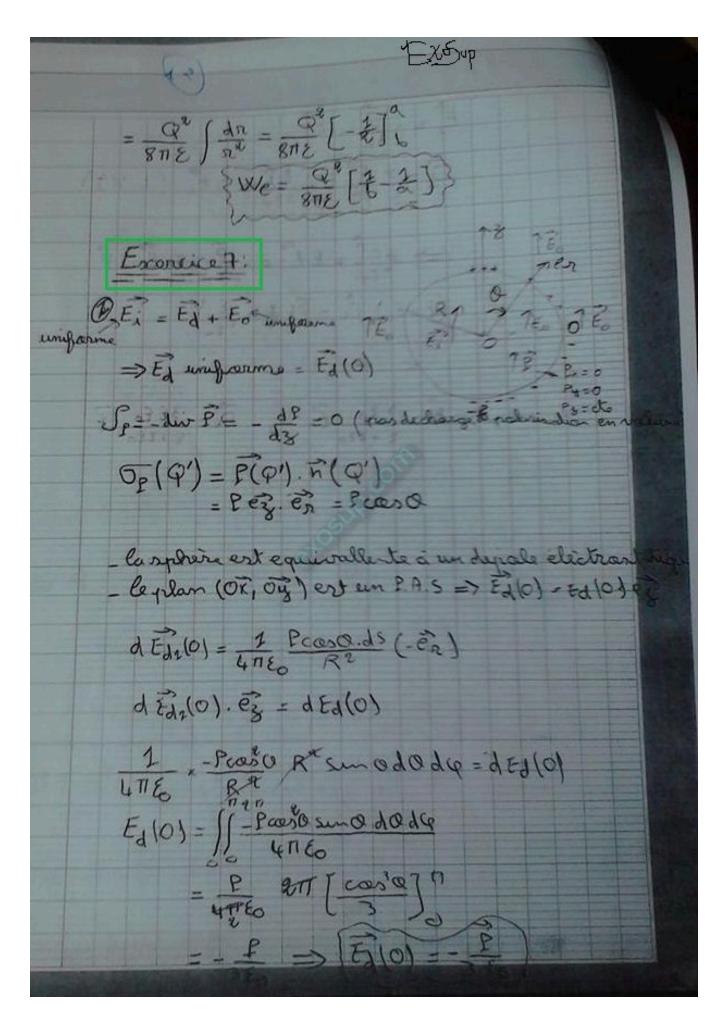
De $ff dS = \frac{Qp_0}{20}$

Education $ff dS = \frac{Qp_0}{20}$

Education $ff dS = \frac{Qp_0}{20}$

De $ff dS = \frac{Qp_0}{20}$

De



2014 SMP4 Module 16 Physique 7 TD Electricité 3

Exercice

Champ uniforme $\vec{E}_0 = \vec{E}_0 \vec{e}_z \rightarrow P$ uniforme $\vec{P} = P \vec{e}_z$ $\begin{cases} \rho_P = -\vec{\nabla} \cdot \vec{P} = 0 \\ \sigma_P = \vec{P} \cdot \vec{n} & \text{avec } n = \vec{e}_r \implies \sigma_P = P \cos(\theta) \end{cases}$

A l'intérieur de la sphère le champ total est : $\vec{E}_i = \vec{E}_0 + \vec{E}_d$ uniforme $\Rightarrow \vec{E}_d$ uniforme

 \vec{E}_d est le champ créé par les charges de polarisation appelé champ dépolarisant.

Pour déterminer \tilde{E}_i il suffit donc de calculer $\tilde{E}_d(O)$ au point O

$$O \in PAS = xOy \implies \vec{E}_d(O) \perp PAS \text{ Soit } \vec{E}_d(O) = E_d(O)\vec{e}_z$$

Rappel
$$\vec{E} = \frac{Q}{4\pi\epsilon_0} \frac{\vec{u}}{r^2} \implies d\vec{E} = \frac{dQ}{4\pi\epsilon_0} \frac{\vec{u}}{r^2}$$

$$dQ_{p} = \sigma_{p} dS ; \sigma_{p} = P\cos(\theta) ; r = R ; dS = R^{2} \sin(\theta)d\theta d\phi ; \vec{u} = -\vec{e}_{r}$$

$$champ créé par \sigma_{p}dS en O : d\vec{E}_{d}(O) = \frac{P\cos(\theta)}{4\pi\epsilon_{0}} \frac{R^{2} \sin(\theta)d\theta d\phi}{R^{2}} \frac{(-\vec{e}_{r})}{R^{2}}$$

$$\vec{E}_{d}(O) = E_{d}(O)\vec{e}_{z} \Rightarrow E_{d}(O) = \vec{E}_{d}(O) \cdot \vec{e}_{z} \Rightarrow JE_{J}(O) \cdot \vec{e}_{z} \Rightarrow \vec{E}_{0}(O) \cdot \vec{e}_{z} \Rightarrow \vec{E$$

$$\vec{E}_{d}(O) = E_{d}(O)\vec{e}_{z} \Rightarrow E_{d}(O) = \vec{E}_{d}(O) \cdot \vec{e}_{z} \rightarrow JE_{J}(O) = JE_{J}(O) \cdot \vec{e}_{z}$$

$$\vec{e}_r \cdot \vec{e}_z = \cos(\theta) \implies dE_d(O) = \frac{1}{4\pi\epsilon_0} \frac{-P\cos^2(\theta) R^2 \sin(\theta) d\theta d\phi}{R^2}$$

$$E_{d}(O) = \frac{P}{4\pi\epsilon_{0}} \int_{0}^{\pi} \cos^{2}(\theta) \sin(\theta) d\theta \int_{0}^{2\pi} d\phi = -\frac{P}{2\epsilon_{0}} \left(\frac{\cos^{3}(\theta)}{3}\right)_{0}^{\pi} \quad \Rightarrow \quad \left|\vec{E}_{d}(O) = \frac{-\vec{P}}{3\epsilon_{0}}\right|$$

Conforme au faite que $\vec{E}_d(O)$ s'opposé au champ polarisant \vec{E}_0 .

Sphère (diélectrique l.h.i):
$$\vec{D}_i = \varepsilon_0 \vec{E}_i + \vec{P} = \varepsilon \vec{E}_i \implies \vec{P} = (\varepsilon - \varepsilon_0) \vec{E}_i = \varepsilon_0 \chi \vec{E}$$

Sphère (diélectrique l.h.i):
$$\vec{D}_i = \varepsilon_0 \vec{E}_i + \vec{P} = \varepsilon \vec{E}_i \implies \vec{P} = (\varepsilon - \varepsilon_0) \vec{E}_i = \varepsilon_0 \chi \vec{E}$$

$$\vec{P} = (\varepsilon - \varepsilon_0) \left(\vec{E}_0 - \frac{\vec{P}}{3\varepsilon_0} \right) \rightarrow \frac{\vec{P}}{(\varepsilon - \varepsilon_0)} + \frac{\vec{P}}{3\varepsilon_0} = \vec{E}_0 \implies \vec{P} = 3\varepsilon_0 \frac{(\varepsilon - \varepsilon_0)}{(\varepsilon + 2\varepsilon_0)} \vec{E}_0 = \varepsilon_0 \chi \vec{E}$$

$$= \varepsilon_0 \left(\vec{E}_0 - \vec{E}_0 \right) \vec{E}_0 = \varepsilon_0 \chi \vec{E}$$

$$\vec{E}_i = \vec{E}_0 + \vec{E}_d = \vec{E}_0 - \frac{\vec{P}}{3\epsilon_0} \quad \Rightarrow \quad \left[\vec{E}_i = \frac{3\epsilon_0}{\epsilon + 2\epsilon_0} \vec{E}_0 \quad \text{et} \quad \vec{D}_i = \frac{3\epsilon\,\epsilon_0}{\epsilon + 2\epsilon_0} \vec{E}_0 \right]$$

$$\vec{E}_0 = E_0 \vec{e}_z = E_0 [\vec{e}_r \cos(\theta) - e_\theta \sin(\theta)]$$

2) a:
$$V_P(M) = \frac{\vec{p} \cdot \overrightarrow{OM}}{4\pi\epsilon_0 (OM)^3} = \frac{\vec{p} \cdot \vec{u}}{4\pi\epsilon_0 r^2}$$
; $\vec{p} = p \vec{e}_z \text{ et } \vec{u} = \vec{e}_r \implies V_P(M) = \frac{p \cos(\theta)}{4\pi\epsilon_0 r^2}$

b: Le champ électrostatique E(M) en un point M s'écrit en utilisant les coordonnées sphériques. \bar{p} est un vecteur constant(en direction et en amplitude : charges immobiles exigent)

$$\vec{E}_{P}(M) = -\vec{\nabla}V_{P}(M) \begin{cases} E_{r} = -\frac{\partial V}{\partial r} = \frac{2p\cos(\theta)}{4\pi\epsilon_{0}r^{3}} \\ E_{\theta} = -\frac{1}{r}\frac{\partial V}{\partial \theta} = \frac{p\sin(\theta)}{4\pi\epsilon_{0}r^{3}} \end{cases} \text{ et } \vec{D}_{P}(M) = \epsilon_{0}\vec{E}_{P}(M) \\ E_{\phi} = 0 \end{cases}$$

2014 SMP4 Module 16 Physique 7

A l'extérieure le champ s'écrit: $\vec{E}_e(M) = \vec{E}_0 + \vec{E}_P(M)$ et $\vec{D}_e(M) = \epsilon_0 \vec{E}_e(M)$

$$\bar{E}_{e}(M) = \begin{cases}
E_{er} = \bar{E}_{0} \cos(\theta) + \frac{2p \cos(\theta)}{4\pi\epsilon_{0} r^{3}} \\
E_{e\theta} = -\bar{E}_{0} \sin(\theta) + \frac{p \sin(\theta)}{4\pi\epsilon_{0} r^{3}}
\end{cases} \text{ et } \boxed{\bar{D}_{e}(M) = \epsilon_{0} \bar{E}_{e}(M)}$$

$$E_{e\phi} = 0$$

3) a: Absence de densité de charge surfacique libre ⇒ Continuité de la composante normale de D

Pour
$$r = R$$
 $\Rightarrow \varepsilon_0 \left(E_0 \cos(\theta) + \frac{2p\cos(\theta)}{4\pi\varepsilon_0 R^3} \right) = \frac{3\varepsilon\varepsilon_0}{\varepsilon + 2\varepsilon_0} E_0 \cos(\theta)$
 $\frac{2p\cos(\theta)}{\varepsilon} = \frac{3\varepsilon_0}{\varepsilon} \left(\frac{3\varepsilon_0}{\varepsilon} + \frac{3\varepsilon_0}{\varepsilon} \right) = \frac{3\varepsilon\varepsilon_0}{\varepsilon} \left(\frac{\varepsilon}{\varepsilon} - \frac{\varepsilon}{\varepsilon} \right)$

$$\frac{2p\cos(\theta)}{4\pi\epsilon_0 R^3} = E_0\cos(\theta) \left(\frac{3\epsilon_0}{\epsilon + 2\epsilon_0} - 1\right) = E_0 \left(\frac{\epsilon - \epsilon_0}{\epsilon + 2\epsilon_0}\right)\cos(\theta) \implies \vec{p} = \frac{4}{3}\pi R^3 \vec{P}$$

b : Continuité de la composante tangentielle de Ē

$$-E_{0}\sin(\theta) + \frac{p\sin(\theta)}{4\pi\epsilon_{0}R^{3}} = -E_{0}\sin(\theta) + \frac{P\sin(\theta)}{3\epsilon_{0}}$$

$$-E_{0}\sin(\theta) + \frac{\frac{p}{4\pi\epsilon_{0}R^{3}}}{\pi^{3}P} \frac{\sin(\theta)}{4\pi\epsilon_{0}R^{3}} = -E_{0}\sin(\theta) + \frac{P\sin(\theta)}{3\epsilon_{0}}$$

$$\Rightarrow \frac{\text{Continuit\'e de la composante tangentielle de \bar{E} verifie\'e}}{\tan \theta}$$